Characterization of Engineering Materials

R. Mythili Metallurgy and Materials Group Indira Gandhi Centre for Atomic Research, Kalpakkam rm@igcar.gov.in

MEPE-2020, Jan 31-Feb 1, 2020

Need for characterization

What is Microstructure?

- •Morphology
- •Microchemistry/ Composition
- •Crystal structure
- •Texture

1mm

	Phase Details				
24	Phase	Color	Fraction (%)	Pixel	
	1 SIAIO		45.7	89,799	
	2 SiFeO		44.9	88,188	
	3 SIO		3.4	6,708	
	4 SIKO		3.7	7,372	
	5 FeTiO		0.3	685	
	6 FeO		0.2	445	
	7 CaPO		0.0	55	

How do we characterize?

Nature of materials

- Crystalline, amorphous
- Metal,Semi-conductor, Ceramic/insulator
- Bulk or Surface

Techniques

- - FTIR, Raman, ...
 - MassSIMS, ICPMS,...
 - * X-ray XRF, XPS, ...
 - Nuclear
 NMR, Mossbauer,...

Diffraction ⇒ X-ray ⇒ Electron

→ Neutron

Microscopy

Optical
Electron
SEM, TEM
Scanning probe
Tunneling
AFM

Optical Microscopy

- •Resolution of human eyes is of the order of 0.3 mm.
- •Features to be observed:

•Grain shapes and size: from <μm to the cm regime
•Precipitate size: mostly in the μm regime
•Volume fractions and distributions of various phases
•Defects such as cracks and voids: <μm to the cm regime

Compound Optical Microscope

- Visible light as illumination source
- Range of samples characterized almost unlimited for solids
- Usually nondestructive; sample preparation may involve material removal

Optical Microscopy- Resolution

• Transmitted OM - transparent specimens like thin section of rocks, minerals and single crystals- *absorption*

• **Reflected OM** - opaque specimens like metals, ceramics, semiconductors - *reflection*

Inverted microscope

- Materials science

Typical magnification in optical microscope is up to 1000x

Resolution and Magnification:

d of two points is such that **central maximum** of one source falls on the **first diffraction minimum** of the other

 $d = \lambda/2n\sin\alpha$

 $d \sim 0.3 \mu m$ for λ =0.55 μm

Useful magnification = 0.3µm/ 0.3mm = 1000 Any further zooming is of no use!

Identification of phase regimes- 9Cr-1W-0.06Ta RAFM steel

X-ray Diffraction

Bra	gg's law: 20	$l_{hkl} \sin \theta =$	= n,				
Source:							
Monochromatic – Powder XRD							
White- Single crystals							
	Μο Κα1	0.709300Å					
	Cu Kα1	1.54056Å					
	Co Kα1	1.788965Å					
	Cr Kα1	2.28970Å					

Sample: Powder or bulk specimen with flat and smooth surface

Geometry:

 $\theta:2\theta$: tube is fixed, sample rotates at θ°/\min and detector rotates at $2\theta^{\circ}/\min$.

 $\theta:\theta$: sample is fixed and tube rotates at a rate of θ°/\min and detector rotates at a rate of θ°/\min .

Powder X-ray Diffraction

- Powder- collection of small crystallites oriented randomly
- X-ray beam falls simultaneously on many crystals and sees all the planes
- By varying the angle all the possible diffraction peaks detected

Crystallite size and microstrain

- Crystallites smaller than ~120nm create broadening of diffraction peaks
 - this peak broadening can be used to quantify the average crystallite size of nanoparticles using the Scherrer equation
 - must know the contribution of peak width from the instrument by using a calibration curve
- microstrain may also create peak broadening
 - analyzing the peak widths over a long range of 2theta using a Williamson-Hull plot can let you separate microstrain and crystallite size

Texture analysis

Anisotropy of

properties

Deformation

Recrystallisation

Types

- Orientation of Crystals is not random
- Preferred Orientation of crystals

Macro texture: XRD Micro texture : EBSD in SEM, OIM in TEM

Texture Representation

Pole figures

Stereographic projection of distribution of crystallographic planes w.r.t the specimen co-ordinates

Electron Microscopy techniques for microstructural analysis

Negative Charge - Beam Focus / Deflection by Electric Coils

•Electron *Low Mass – Non destructive for most materials

Dual Behavior of Electron – Wave & Particle

Wave Behavior

•Optical

•Ion

Elastic Scattering - Images (phase / amplitude contrast)

- Diffraction patterns Crystallography
- Shorter Wavelength– Better Resolution

Particle Behavior

Electron specimen interactions

No. of signals generated - Inelastic scattering, Ionisation

Wealth of information - Chemical information

Comparing SEM and TEM

	TEM	SEM
Electron Beam	Broad, static beams	Beam focused to fine point; sample is scanned line by line
Voltages Needed 🕨	TEM voltage ranges from 60-300,000 volts	Accelerating voltage much lower; not necessary to penetrate the specimen
Interaction of the beam electrons >	Specimen must be very thin	Wide range of specimens allowed; simplifies sample preparation
Imaging ►	Electrons must pass through and be transmitted by the specimen	Information needed is collected near the surface of the specimen
Image Rendering	Transmitted electrons are collectively focused by the objective lens and magnified to create a real image	Beam is scanned along the surface of the sample to build up the image

Secondary electrons (SE)

- Generated from the collision between the incoming electrons and the loosely bonded outer electrons
- Low energy electrons (~10-50 eV)
- Only SE generated close to surface escape (topographic information is obtained)
- Number of SE is greater than the number of incoming electrons

Backscattered electrons (BSE)

- A fraction of the incident electrons retarded by the electro-magnetic field of the nucleus and if the scattering angle >180° the electron can escape from the surface
- High energy electrons (elastic scattering)
- $\Box \text{ Fewer BSE tha}^{\mathsf{E}_{\mathsf{e}}} \approx \mathsf{E}_{\mathsf{0}}$
- Probes higher depth than SE
- Depends of atomic number
- Undergoes Diffraction- EBSD for Crystallographic identity & microtexture

X-ray emission - Principle

Inner-shell ionization => K-shell or higher-shell vacancies or heat depending on Critical ionization or excitation potential E_c

De-excitation => Characteristic X-radiation or Auger electron

- X-rays emitted from the atom have a characteristic energy unique to the element from which it originated.
- These signals are collected and sorted according to energy or wavelength to yield elemental composition from micron size features of the specimens.

Scanning Electron Microscope

- Gun
 - Filament
 - Wehnelt
 - Anode
- Electromagnetic Lenses
 - Usually three
- Spray apertures
 - At least one. More with higher resolution
- Scanning coils
 - Two sets X and Y deflection
- Stigmators
 - 1-2 sets
- Detectors
 - Could be several

Samples

- Form: any solid or liquid having a low vapour pressure (10⁻³ torr, or 0.13 pa)
- Size:. Samples as large as 4-8 cm.
- Standard metallographic polishing and etching techniques are adequate for electrically conducting materials.
- Non-conducting materials are generally coated with a thin layer of carbon, gold, or gold alloy. Samples must be electrically connected to the holder
- Fine samples, such as powders, can be dispersed on electrically conducting film, such as a silver point that has been thoroughly dried. Samples must be free from high vapor pressure liquids, such as water, organic cleaning solutions, and remnant oil-base films

Microstructure of a Ti-Ta-Nb alloy

SE imaging
Morphology

BSE imaging
Bright – High Z
Dark – Low Z

•Grain Size •Area fraction of phases

Chemical identity \rightarrow EDS- X rays

Composition analysis from regions of a few microns size
Spatial mapping of element distribution

•No sample preparation required •High depth of field ⇒3D information

Fatigue Striations

Intragranular

Identification of origin and mechanism of failure

Electron Back Scattered Diffraction

- BSE undergo diffraction
- Diffracted electrons escaping from near surface produce
 Kikuchi bands imaged by film or a phosphor screen

- A typical EBSD pattern
- Symmetry of crystal lattice
- Width of bands are a measure of the interplanar spacing
- Angles between bands are related to the angles between planes in the lattice.

Pradyumna Kumar Parida et al, Trans IIM, Dec. 2018

Transmission Electron Microscopy

- Imaging of features at 1000 to 1000,000 X.
- Microstructural detail at resolution of <0.2nm
- Qualitative and quantitative elemental analysis of microstructural features as small as 10 nm
- Crystal structure and orientation determination of microstructural features as small as 10 nm
- Lattice imaging of crystals with inter-planar spacing > 0.12 nm
- Characterization of microstructure at very high magnification - metals, ceramics, geological materials, polymers, and biological materials
- Identification (composition and crystal structure) of inorganic phases, precipitates, and contaminants

Simplified ray diagram

Electron diffraction

• Elastic scattered electrons

 Only the direction of electron is changing (Bragg scattering)

- Elastic scattering is due to Coulomb interaction between the incident electrons and the electric charge of electron cloud and nucleus (Rutherford scattering).
- The elastic scattering is due to the average position of the atoms in the lattice
- Reflections satisfying Braggs law: $2dsin\theta = n\lambda$

Electrons interact 100-1000 times stronger with matter than X-rays

- more absorption (need thin samples)
- can detect weak reflections not observed with X-rays

Electron Diffraction in TEM

\circ Consequences of small λ

- \circ Electron wave length at 200 kV = 2.508 pm
- $\circ 1/\lambda \sim 400 \text{ nm}^{-1}$
- $|g_{hkl}| = 1/d_{hkl} = 5 \text{ nm}^{-1}$ (typically)
- Very small Bragg angle (~1°)
 Diffracting planes are nearly parallel to the primary beam

Selected area electron diffraction

- A specimen which is crystalline will deflect incoming electrons in specific directions.
- For a parallel incident beam all electrons diffracted over the same angle will be focused at the same position in the BFP of objective lens.
- Area selected by aperture placed in image
- Virtual aperture created in specimen plane – demagnified !

Bright Field / Dark Field modes

- Selective filtering of scattering that occurs at Bragg angles
- Dark-field image contains specific orientation information not just general scattering information as is the case for mass-thickness contrast

DEFECT STRUCTURE EVOLUTION IN Strain amplitude (Δεt/2) of ±0.25%, T= 923K

- Slip bands with dislocation pile ups
- Dislocation loops
- Fine Deformation twins (111)

SS316LN-LCF-Creep-HCF@923K

Well defined dislocation cells Dislocation vein structure with high density dislocation walls **Point defects** like Frank edge-on loops

Ti modified 316 stainless steel bellow

- Partial conversion of $\gamma \rightarrow \alpha'$
- Strain induced martensite formed during fabrication
- Nucleation centres for α'

Summary

Characterization is essential for

- Understanding deformation mechanism
- Development of materials and processes
- Life assessment/prediction

Several tools available to study various aspects of characteristics of materials from component to atomic scale, with technological advancements!

- Morphology
- Crystal Structure
- Texture
- Composition

THANK YOU